
Deep–Sea Research II 193 (2021) 104975

Available online 25 September 2021
0967-0645/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Eastern Bering Sea shelf environmental and lower trophic level responses to 
climate forcing: Results of dynamical downscaling from CMIP6 

Wei Cheng a,b,*, Albert J. Hermann a,b, Anne B. Hollowed c, Kirstin K. Holsman c, 
Kelly A. Kearney a,c, Darren J. Pilcher a,b, Charles A. Stock d, Kerim Y. Aydin c 

a University of Washington, Cooperative Institute for Climate, Ocean and Ecosystem Studies, Seattle, WA, USA 
b NOAA, Pacific Marine Environmental Laboratory, Seattle, WA, USA 
c NOAA, Alaska Fisheries Science Center, Seattle, WA, USA 
d NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA   

A R T I C L E  I N F O   

Keywords: 
Eastern bering sea 
Dynamical downscaling 
Marine biogeochemistry 
Living marine resources 

A B S T R A C T   

In this study we present projected changes in the Eastern Bering Sea shelf (EBS) biophysical processes in response 
to climate forcing scenarios from the Coupled Model Intercomparison Phase 6 (CMIP6). These changes are ob
tained by dynamical downscaling using a Bering Sea regional model. Surface atmospheric and ocean boundary 
forcing from three Earth System Models (ESMs) in CMIP6, and a low and a high emission scenario of Shared 
Socioeconomic Pathway (SSP126 and SSP585) of each of the ESMs are considered. Ensemble mean results 
suggest that, contrary to an anticipated increase in ocean stratification under warming, diminishing ice cover in 
response to climate forcing and resultant reduced surface freshening weakens EBS stratification in the melt 
season. Modeled ensemble mean phytoplankton and zooplankton biomass on the EBS exhibits subsurface 
maxima during the growing season; the amplitude of these maxima decreases with warming, along with a 
reduction in primary productivity and oxygen concentration over much of the EBS water column. Phenology of 
both phytoplankton and zooplankton biomass on the EBS shifts earlier, leading to an increase (decrease) in 
biomass averaged between April–July (August–November), while annually averaged biomass decreases under 
warming. Projected changes of primary and secondary plankton biomass at the end of the 21st century are not 
well separated between the SSP126 and SSP585 scenario in light of the large across model spread under each 
scenario. The projected ensemble mean warming amplitude of the EBS summer bottom temperature is largely 
unchanged between results forced by the Coupled Model Intercomparison Phase 5 Representative Concentration 
Pathway 8.5 (CMIP5 RCP8.5) and CMIP6 SSP585 scenarios. Likewise, the reduction rate of annual mean 
phytoplankton and large zooplankton biomass are comparable between RCP8.5 and SSP585 projections, even 
though the absolute amplitudes of biomass are sensitive to modeling parameters such as the solar irradiance 
attenuation curve. Hence, within the Bering Sea dynamical downscaling framework, projected long-term 
warming trends in EBS bottom temperature and plankton biomass reduction rates are robust responses to 
climate forcing.   

1. Introduction 

In the last decade, numerous coupled model interdisciplinary 
research teams have endeavored to project the implications of climate 
change on marine ecosystems (Tittensor et al., 2018; Bryndum-Buchholz 
et al., 2019; Payne et al., 2020). These efforts have contrasted climate 
futures under alternative emission scenarios (O’Neill et al., 2014), 
fishing scenarios (Groeneveld et al., 2018), and in some cases alternative 

ecosystem model structures (Cheung et al., 2019). The Alaska Climate 
Integrated Modeling (ACLIM) project utilizes dynamic climate model 
downscaling to project impacts on marine ecosystems in the eastern 
Bering Sea and the implications of these changes for communities 
dependent on the region’s living marine resources (Hollowed et al., 
2020). The ACLIM project employs a multi-model approach to assess the 
contributions of model complexity, emission scenario uncertainty, and 
global Earth System Model (ESM) structural differences on the projected 
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impacts of climate change on the eastern Bering Sea shelf (hereafter, 
referred to as EBS) ecosystem under current and alternative manage
ment scenarios (Hollowed et al., 2020). 

The EBS subarctic marine ecosystem has undergone rapid physical 
changes in the last decade in response to shifting climate conditions 
(Stabeno et al., 2017; Stabeno and Bell, 2019). These changes have 
triggered complex ecological adjustments across trophic levels such as 
delayed spring bloom in anomalously warm years, low abundances of 
large crustacean zooplankton, and seabird die-offs (Sigler et al., 2010; 
Duffy-Anderson et al., 2019; Stevenson and Lauth, 2019; Siddon et al., 
2020), and some of these changes have important implications for the 
future of commercial fisheries in the region (Eisner et al., 2020; Holsman 
et al., 2020; Reum et al., 2020). In ACLIM phase I, a regional ocean 
model with 10 km grid spacing (hereafter referred to as the Bering10K 
model) was coupled to a biogeochemical model (Gibson and Spitz, 
2011) to project future marine ecosystem states of the region under 
different future emission scenarios. The Bering10K modeling system was 
developed to resolve relevant physical and biogeochemical processes 
impacted by climate at the appropriate spatial and temporal resolution 
(Hermann et al., 2013). Earlier versions of Bering10K have been used in 
dynamical downscaling of EBS for the past decades (Ortiz et al., 2016) 
and for climate change projections (Hermann et al., 2013, 2016). 

Since then, the Bering10K model has undergone further improve
ments (detailed in Section 2) and reached a mature phase in 2017, 
allowing the ACLIM research team to propose testing the operational 
capability of the existing coupled model enterprise. Here, the term 
“operational” is used in the sense that the team could rapidly update 
regional downscaling software (originally built for the existing coupled 
model) upon receipt of results from the Coupled Model Intercomparison 
Project (CMIP) phase 6 (CMIP6) (Eyring et al., 2016) under different 
scenarios (O’Neill et al., 2016). CMIP is a coordinated model 
inter-comparison project where the world’s climate research centers 
carry out global Earth System Model (ESM) simulations under the same 
Greenhouse Gases (GHGs) and aerosol emission scenarios and the sim
ulations are cross compared and used to assess climate change un
certainties. Phases of CMIP occur roughly every five years along with the 
updates of GHGs and aerosol forcing scenarios, and currently CMIP is in 
its 6th phase. Long simulations (from multi-centennial to 
multi-millennial time scales) of the global ESMs necessitate the use of 
coarse horizontal resolutions (nominally 1◦ longitude/latitude mesh size 
in the ocean). However, these coarse-resolution global simulations fail 
to capture biophysical features that play a key role in mediating upper 
trophic level responses to climate change. For example, in the EBS re
gion, the global models fail to capture critical spatial and temporal 
variations of the “cold pool” (bottom waters on the ESB with tempera
ture colder than 2◦C), cross-shelf variations in seasonal stratification, 
and other fine-scale circulation features that influence the growth and 
survival of many fisheries species (Hermann et al., 2016; Kearney et al., 
2020). Dynamical downscaling, i.e. running a finer-resolution regional 
ocean model driven by air-sea fluxes and lateral boundary conditions 
derived from a larger domain, coarser-resolution model, can help 
resolve these important features. Besides providing information on fine 
spatial scales, operationalizing the Bering10K model extends the ACLIM 
project assessment of uncertainty by measuring the contribution of 
structural changes across global ESM phases, and improvements to the 
Bering10K biogeochemical model itself (Pilcher et al., 2019; Kearney 
et al., 2020), to changes in future regional projections. To our knowl
edge, this type of evaluation of the respective roles of structural changes 
to ESMs and improvements to a regional ocean circulation model with 
biogeochemistry on downscaled future ocean projections has not been 
attempted using a coupled regional biophysical modeling framework. 

Operationalizing the Bering10K model also enables a timely 
dissemination of scale-relevant climate information for future climate 
impact assessments. The Intergovernmental Panel on Climate Change 
(IPCC) guidelines for assessment report authors encourage reliance on 
findings published in the peer reviewed literature (Mastrandrea et al., 

2011). The short time period between the release of updated global ESM 
model projections and the due dates for submission of the IPCC assess
ment reports has previously precluded the ability to complete processing 
and publication of updated downscaled high resolution ocean model 
results necessary for ecosystem change assessment. The state-of-the-art 
has matured to a point where updates of the Bering10K modeling en
terprise can occur rapidly, providing regional projections of future 
ecosystem states in time for consideration by IPCC assessment teams. 
This would allow key findings identified by working group I of the IPCC 
to be fully considered by authors of working groups II and III. 

Under this background, we have recently completed a Bering Sea 
dynamical downscaling suite driven by selected CMIP6 models. In this 
study, we perform a baseline assessment of key biophysical changes in 
the EBS Large Marine Ecosystem (LME) in response to climate forcing 
from these new simulations, and compare results with previous down
scaled simulations forced by the ESMs from CMIP phase 5 (CMIP5), the 
previous phase of CMIP. In particular, we focus on spatiotemporal 
characteristics of the environmental and lower trophic level responses 
critical to early life history and fish larvae survival (Aydin and Mueter, 
2007; Duffy-Anderson et al., 2016) but these have not been analyzed in 
great detail in previous investigations. These characteristics include 
phytoplankton and zooplankton seasonal bloom timing and plankton 
biomass adjustment trends specific to each EBS biophysical domain. We 
also examine vertical distribution of phytoplankton biomass on EBS, 
information not readily available from satellite remote sensing and 
coarse resolution global ESMs. We examine mainly individual bio
physical processes but links between the variables are noted where 
applicable. Formal quantification of co-variability between the variables 
using multivariate EOF analyses are presented in a companion paper 
(Hermann et al., 2021, this issue), where identified co-variability is also 
used to expand the regional downscaling ensemble size. 

The rest of the paper is organized as follows. In Section 2, we 
introduce the three CMIP6 global ESMs selected and the reasons behind 
those selections, followed by a summary on the Bering10K biogeo
chemical model improvements and the diagnostic methods. The main 
results from this study are presented in Section 3. In Section 4 we discuss 
caveats and implications of the main results; the paper’s conclusions 
appear in Section 5. 

2. Methods 

2.1. CMIP6 ESMs selection 

To assess uncertainties, it is useful to downscale an ensemble of 
global ESMs, but the high computational and data management de
mands of the high-resolution Bering10K regional simulations limit the 
number of parent models that can be practically included in the 
ensemble. 

Similar to previous studies (Hermann et al., 2016, 2019), our selec
tion is based on three considerations: 1) regional characteristics of the 
Bering Sea; 2) amplitude of future warming; 3) continuity in the models 
used for CMIP5 and CMIP6 downscaling. The Eastern Bering Sea is 
seasonally covered by sea ice and there is strong interannual variability 
in the ice cover, and sea ice is a major driver of Bering Sea ecology 
(Sigler et al., 2010). Therefore, we first select global ESMs that capture 
the spatiotemporal characteristics of observed sea ice in the “historical” 
period (1980–2014) and eliminate those that perform poorly in this 
regard. Secondly, from the remaining models, we select ones that cover a 
range of possible future warmings (Drenkard et al., in press). Under a 
specific Green House Gas (GHG) and aerosol forcing scenario, differ
ences in warming across the global ESMs are associated with their 
structural and parameter uncertainties. This step of selection was in part 
guided by published results on the equilibrium climate sensitivity (ECS) 
(Zelinka et al., 2020). ECS quantifies the equilibrium change in 
global-mean surface air temperature after a doubling of CO2 concen
tration, and is a frequently used metric across ESMs. Lastly, from the 
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models that met criteria one and criteria two, to facilitate comparison of 
downscaled simulations across CMIP phases, we opted to use ESMs from 
the same modeling centers for both the CMIP5 and CMIP6 dynamical 
downscaling. Together, these considerations led us to choose the 
particular modeling centers and ESMs as summarized in Table 1. 

The development of global ESMs is an ongoing process at each of the 
major climate modeling centers, and therefore the simulations submit
ted to each subsequent phase of the CMIP include the most recent up
grades to the atmosphere, ocean, land, sea ice, and ocean 
biogeochemistry components of each center’s models. Between CMIP5 
and CMIP6, the three models used in this study reflect the overall 
development trends across global ESMs toward improved resolution of 
smaller-scale ocean processes, increased comprehensiveness of biolog
ical components and their influence on the carbon cycle, and tighter 
coupling between land and ocean components (Séférian et al., 2020). 
Specifically, the GFDL-ESM4 model increased the vertical and horizontal 
resolution of its ocean module and migrated to a Z*-isopycnal hybrid 
coordinate system; within the biogeochemical module, it added explicit 
representation of zooplankton, refined the particle remineralization 
dynamics, and added additional nutrient exchanges between the ocean, 
atmosphere, and land (Stock et al., 2020; Dunne et al., 2020). Relative to 
its predecessor, MIROC-ES2L has increased resolution in their atmo
spheric model, and the ocean biogeochemistry module included the 
addition of diazotrophic phytoplankton, expanded links to the terrestrial 
nitrogen cycle, added oxygen cycling and denitrification processes, and 
introduced explicit tracking of the iron cycle (Hajima et al., 2020). 
Within its biogeochemical model, CESM2 improved sub-grid scale light 
processes, introduced variable C:P dynamics, added semi-labile and re
fractory organic material and a ligand tracer to complex with iron, and 
reconfigured burial processes to balance preindustrial river inputs 
(Danabasoglu et al., 2020). 

As a result of these and other changes, the skill and climate sensi
tivity of the three models shifted between their CMIP5 and CMIP6 ver
sions. The CESM2 model has improved historical simulations in 
comparison with the previous generation CESM1, and the ECS of CESM2 
is significantly greater than that of CESM1 (Danabasoglu et al., 2020). 
MIROC-ES2L, on the other hand, saw a significant decrease in its ECS 
relative to its predecessor model, MIROC-ESM. The GFDL-ESM4 model 
maintained a comparable ECS to its predecessor, GFDL-ESM2, with both 
falling toward the lower end of the ECS range across both the CMIP5 and 
CMIP6 suite of models. Overall, CESM2 is among the CMIP6 models with 
relatively high ECS (>5◦C) whereas both GFDL-ESM4 and MIROC have 
relatively low ECS (<3◦C). Warming characteristics in the parent ESMs 
ultimately affect their regional downscaling, as will be shown in Section 
3. 

Anthropogenic forcing in CMIP5 is categorized by Representative 
Concentration Pathway (RCP) such as RCP8.5, where the number 8.5 
denotes the atmospheric radiative forcing magnitude in W/m2. In 
CMIP6, future climate forcing scenarios are called shared socioeconomic 
pathways (SSPs) such as SSP126, SSP585 and so on (O’Neill et al., 
2016), where the first digit denotes the pathway number and the last 
two digits represent atmospheric radiation anomalies, so SSP585 cor
responds to a global mean radiation anomaly at the tropopause of 8.5 
W/m2. CMIP5 RCP8.5 and CMIP6 SSP585 have quite similar net radi
ative forcing and global mean temperature increase in the 21st century 

(Fig. 3 of O’Neill et al., 2016), both representing the high end of future 
pathways. For CMIP6 downscaling, we use the high- and low-end SSPs 
(i.e. SSP126 and SSP585) to capture a range of possible future states. 

2.2. Bering10K 

Bering10K physical model is implemented using the Regional Ocean 
Modeling System (ROMS), a terrain-following vertical coordinate gen
eral circulation model (Haidvogel et al., 2008). The ocean general cir
culation model with tidal mixing is coupled to a sea-ice module (Budgell, 
2005) and ocean biogeochemistry component (Kearney et al., 2020). We 
used direct output of the global ESMs to drive the regional simulations 
for the entire period from 1980 to 2100. In general, no bias correction or 
modulation is applied to atmospheric and oceanic forcing variables 
except to the sea surface height from MIROC-ES2L and runoff (detailed 
below). Bering10K is forced at the sea surface through momentum and 
buoyancy flux exchange with the atmosphere via bulk aerodynamic 
formulae (Fairall et al., 1996), and CO2 fluxes via air-sea gas exchange. 
The lateral boundaries of Bering10K are open and forced by a mixture of 
radiation and nudging boundary conditions (Marchesiello et al., 2001). 
The atmospheric forcing variables are daily time series of surface air 
temperature, surface specific humidity, surface wind vector, downward 
shortwave and longwave radiation fluxes at the sea surface, sea level 
pressure, precipitation, annual mean river runoff, and annual mean at
mospheric CO2 concentration. The ocean lateral boundary forcing var
iables are 3-D monthly ocean currents, potential temperature, salinity, 
and sea surface height for the physical component, and nitrate, ammo
nium, iron concentration, total alkalinity, oxygen, and dissolved inor
ganic carbon concentration for the biogeochemical component. Further 
details of the dynamical downscaling procedure are described in Her
mann et al. (2021, this issue). MIROC-ES2L uses real freshwater flux at 
the sea surface and its ocean mass is not conserved. As a result, after 
several thousands of years of spin-up and pre-industrial control simu
lation, its global mean sea surface height is approximately 4 m. A 4-m 
constant is therefore removed from MIROC-ES2L SSH at every grid 
point throughout our integration. Special care was applied to runoff 
forcing because ESM projected runoffs do not capture the strong spatial 
gradient of runoff in the real world, therefore, we developed a monthly 
climatology from the interannual values of Kearney (2019), and for 
projected years, we modulated our runoff climatology with the ratio of 
future annual runoff to mean annual runoff over the “historical” period 
of each global model, where the spatial average is taken over the 
regional model domain (155◦E-143◦W and 44–71◦N). Hence, for any 
future year, the calculated yearly runoff is a function of the projected 
yearly regional runoff, but the presently observed seasonality and 
spatial distribution is retained. The exact ensemble variant label and 
additional data references are provided in the supplementary material 
(Table S1). 

The Bering10K lower trophic level components underwent coding 
and algorithm improvements as described in Kearney et al. (2020). The 
latest upgrade incorporates carbonate and oxygen dynamics (Pilcher 
et al., 2019). The primary changes between the Hermann et al. (2016) 
version of the BESTNPZ model and the Kearney et al. (2020) version 
include: 1) improved formulation for the role of chlorophyll, sediment, 
and organic matter on the attenuation of short wave radiation as 

Table 1 
Modeling Centers and global ESMs used in the CMIP6 and CMIP5 Bering Sea dynamical downscaling and their equilibrium climate sensitivity (ECS). ECS are obtained 
from Zelinka et al. (2020) where it is estimated using the Gregory method (Gregory et al., 2004).  

Modeling Center National Center For Atmospheric Research 
(NCAR) 

NOAA Geophysical Fluid Dynamics Laboratory 
(GFDL) 

Japan Agency for Marine-Earth Science and 
Technology (JAMESTEC)  

CMIP5 CMIP6 CMIP5 CMIP6 CMIP5 CMIP6 

Model Name CESM1 CESM2-CAM6 GFDL-ESM2M GFDL-ESM4 MIROC-ESM MIROC-ES2L 
ECS (◦C) 2.94 5.15 2.44 2.7 4.65 2.66 
model description Kay et al. (2015) Danabasoglu et al. (2020) Dunne et al. (2012, 2013) Dunne et al. (2020) Watanabe et al. (2011) Hajima et al. (2020)  
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available for phytoplankton photosynthesis and distribution of surface 
heat fluxes throughout the water column, 2) correction of 
non-mass-conservative behavior within the biological module, 3) 
removal of macronutrient nudging except at the lateral boundaries, and 
4) adjustment of the euphausiid prey preferences to allow for detrital 
scavenging in winter; see Kearney et al. (2020) for further comparison of 
the two versions. In addition, vertical layers of the model have been 
increased from 10 used in Hermann et al. (2016, 2019) to 30 in the latest 
implementation, with stretched layer thickness - thinner in the upper 
water column and thicker at depth (a subset is shown in Fig. 1 b-c). 
Horizontal grid locations remain unchanged from its earlier version. The 
Bering10K hindcast simulation (1980–2018), forced by atmospheric and 
oceanic reanalysis products, was evaluated against observations and 
found to have high skills in replicating observed physical environment of 
the EBS including horizontal and vertical patterns of water movement, 
stratification, and temperature and salinity signatures of water masses 
on the shelf (Kearney et al., 2020). It is also able to capture the mean 
seasonal cycle of primary production in the EBS, even though its ability 
to reproduce observed interannual variability in nutrient cycling, pri
mary production and zooplankton community composition remains 
limited (Kearney et al., 2020). 

2.3. Diagnostic methods 

Simulated EBS bottom temperature is compared with in situ mea
surements made by the NOAA Alaska Fisheries Science Center summer 
trawl survey since the 1970s. The survey starts from the southeast shelf 
and moves northward as the season progresses, and the survey window 
is centered around July but can span 2–3 months depending on the 
measurement schedule. Therefore the survey data are not strictly 

synoptic but they nonetheless provide a valuable benchmark for model 
evaluation. To facilitate comparison with model simulations, we inter
polate each year’s survey data onto a regular 0.1◦ longitude by latitude 
grid and assume they are taken in July of each year, and this data set is 
used to ground truth model simulations. 

Sea-ice concentration, the fraction of each ocean grid box occupied 
by sea ice, from the downscaled historical simulation (1980–2014) is 
evaluated against corresponding satellite observations. Monthly time 
series of satellite sea-ice concentration is available from the national 
snow and ice data center for the period of 1979 to the present, and we 
use its 1980–2014 data in our analysis to match with the modeled 
“historical” time period. 

Original model output is saved as weekly averages from which we 
construct time series of monthly averages. All ensuing analyses are 
performed using the monthly time series. Monthly climatology of the 
downscaled projections is defined from three 35-year periods: 
1980–2014 (“historical” climatology), 2031–2065 (“mid-century” 
climatology) and 2066–2100 (“late 21st century” climatology); the 
relatively long 35-year window was chosen to reduce potential biases 
caused by interannual to decadal variability when defining a clima
tology. Climate change signals are assessed by contrasting results from 
the latter two periods with those from the earlier period. 

The Bering10K BGC model has two phytoplankton compartments 
(large and small phytoplankton, named PhL and PhS respectively). 
Whenever we use the term “phytoplankton” in the paper, it represents 
the sum of these two components unless otherwise noted. Zooplankton 
size classes, not counting the top predator “jellyfish”, include six func
tional groups: microzooplankton (MZL), small-bodied copepods (Cop), 
shelf and oceanic euphausiids (EupS and EupO), shelf and oceanic large- 
bodied copepods (NCaS and NCaO). In our results, “large zooplankton” 

Fig. 1. ROMS Bering10K domain and horizontal grid points where one out of ten grid points in both coordinate directions are shown (a); terrain-following vertical 
coordinate layers along the cyan transect in a), for brevity, only K = 5, 10, 15, 20, 25 are shown (b); zoom-in of b) from surface to 250m and grid point 80 to 182 (c); 
Bering Sea shelf (depth ≤ 200m) bio-physical domains (d). Domains in d) are divided by the 50-m and 100-m isobaths in the cross-shelf direction and 60◦N in the 
north-south direction. The domains north (south) of 60◦N are named N1, N2 and N3 (S1, S2, and S3) respectively moving onshore, and these names are labeled 
in Figs. 11–13. 
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is the sum of Cop, EupS, EupO, NCaS, and NCaO. All lower trophic level 
biological state variables are expressed in the unit of mg C/m3 using a 
constant nitrogen to carbon molar ratio of 16:106 (0.0126 mmol N (mg 
C)-1). Additional detail regarding these state variables is available in 
Kearney et al. (2020). 

We divide the year into three seasons: December-January-February- 
March (DJFM), April-May-June-July (AMJJ) and August-September- 
October-November (ASON) based on large zooplankton seasonal cy
cles, which corresponds to overwintering, spring growth, and fall 
decrease respectively. For consistency, we use the same time windows 
for phytoplankton seasonal aggregation but note that phytoplankton 
spring growth can be ahead of zooplankton growth. In our diagnosis, 
whenever horizontal spatial averaging is performed, it is weighted by 
the areas of each grid cell, and vertical averaging is weighted by layer 
thickness. No vertical interpolation to constant depths is attempted, so 
vertical distribution of fields are displayed either as a function of native 
vertical coordinate layers, where K = 30 (K = 1) corresponds to sea 
surface (ocean bottom), or mean depth of the vertical layer averaged over 
the corresponding horizontal domain. 

To examine spatial heterogeneity, our analysis uses the historical 
division of the EBS (Coachman, 1986) and addresses each subdomain 
(colored areas in Fig. 1d) specifically: 0–50 m is the inner shelf domain 
where the water column is well mixed year around; mid-shelf between 
the 50 m and 100 m isobaths is well mixed in winter but has two distinct 
layers in summer representing a strong thermocline; outer shelf between 
the 100 m and 200 m isobaths has both the surface and bottom well 
mixed layers separated by stratified water in the intermediate depth. 

Besides the cross-shelf divisions, the EBS is separated into the northern 
and southern sub-divisions by 60◦N latitude following Stabeno et al. 
(2012). 

3. Results 

3.1. Sea ice and EBS shelf bottom temperature 

All downscaled simulations in the historical period (1980–2014) 
capture the observed pattern of mean ice concentration in March 
(Fig. 2), the month with the most extensive sea-ice cover. In the simu
lations and satellite observations, sea-ice concentration decreases from 
the northwest towards the southeast following shelf orientation. Among 
the ESM forcing ensemble, GFDL forcing produces the closest match 
with satellite observations, judging by the areas occupied by 90% ice 
concentration and ice edge location denoted by the 10% ice concen
tration contour (Fig. 2a-c). All simulated climatological seasonal cycles 
follow the shape of the satellite-observed seasonal cycle (Fig. 2e), and 
the EBS averaged March climatology and its interannual standard de
viation (from 1980 to 2014) is 0.43±0.16, 0.46±0.12, 0.45±0.16 from 
CESM, GFDL and MIROC forced simulations, respectively, compared to 
0.58±0.18 from satellite observation. Simulated sea ice has less rapid 
melting than observations in spring, a long-standing issue in sea-ice 
modeling (e.g. Cheng et al., 2014). Under warming, winter sea-ice 
fraction on the EBS shelf will decrease significantly (Fig. 3, a-c) while 
the ice-free season widens (Fig. 3d). 

Simulated climatology of bottom temperature in July from the his

Fig. 2. March climatology of sea-ice fraction (dimensionless) from “historical” (1980–2014) simulations (a–c) and satellite SSM/I NASA Team algorithm (d). The red 
line in a-c denotes the 10% ice fraction contour from the satellite data. Climatological seasonal cycle of ice fraction averaged over areas where ice concentration is not 
zero (e). Names of global ESMs used to drive Bering10K are indicated on a-c. 
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Fig. 3. March climatology of sea-ice fraction (dimensionless) in 2066–2100 under SSP585 forcing (a–c). The red line in a-c denotes the 200-m isobath, and names of 
the global ESMs used to drive Bering10K are shown on each panel. Climatological seasonal cycle of ice fraction averaged over the horizontal domain shown in a-c (d). 
Solid (dashed) lines in d) represent monthly climatology based on 1980–2014 (2066–2100). 

Fig. 4. Climatology of July bottom temperature from Bering10K simulations (a–c) and summer trawl survey (d); July bottom temperature averaged over the Eastern 
Bering Sea shelf from 1980 to 2100 (e). Climatology in a)-d) is computed from 1980 to 2014. Solid (dashed) lines in e) after 2014 are forced by SSP126 (SSP585) 
scenarios where the straight lines are the least-square linear regressions of the corresponding time series. Trawl survey in e) spans the years 1980–2019. 
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torical period captures the corresponding spatial pattern of survey data 
(Fig. 4) but there are noticeable across-simulation differences – the 
GFDL and MIROC forced simulations are colder than the observations 
(comparing Fig. 4 b-c with Fig. 4d) while the CESM forced simulation 
(Fig. 4a) is warmer: averaged spatially over the EBS (Fig. 4e), 
1980–2014 mean bottom temperature and its interannual standard de
viation are 3.27±0.95◦C, 1.38±0.61◦C, and 1.44±0.87◦C from CESM, 
GFDL, and MIROC forcing, respectively, while the corresponding survey 
value is 2.26±0.62◦C. The biases in modeled bottom temperature is 
consistent with sea-ice extent biases – CESM forcing produces smaller ice 
extent than observations and a warm bottom temperature bias, while 
GFDL and MIROC forcings lead to a positive ice extent bias and a cold 
bottom temperature bias. Nonetheless, all simulations under the SSP585 
scenario show significant warming trends from 2015 to 2100 (denoted 
by the dash straight lines in Fig. 4e) with an amplitude of 0.51◦C, 
0.32◦C, and 0.44◦C per decade from CESM, GFDL, and MIROC forced 
simulation, respectively, explaining 67%, 48% and 62% of the corre
sponding variance (p<0.00001). To summarize, a strong warming trend 
in EBS bottom temperature is projected by all downscaled simulations 
under the SSP585 emission scenario. Under SSP126 forcing, CESM and 
GFDL forced simulations have significant warming trends of 0.25◦C and 
0.11◦C per decade respectively (corresponding R2 is 0.24 for CESM (p <
0.00001) and 0.16 for GFDL (p = 0.0002)) while MIROC forced simu
lation shows no significant trend. 

3.2. Constraint of regional simulation by parent global ESMs 

While the high-resolution regionally downscaled simulations are 
expected to resolve sharper spatial gradients and stronger temporal 
variability than global ESMs, the degree to which quantities integrated/ 
averaged over the whole Bering10K domain (both horizontally and 
vertically) are constrained by parent model forcing versus internal 
regional model dynamics is not well understood. The relative impor
tance of external forcing (from global ESMs) versus internal dynamics of 
the regional model is likely process dependent. Presumably, the domain 
integrals of physical variables from the parent ESMs and dynamically 
downscaled regional simulations are more likely to be similar to each 
other than is the case for biological variables, since the governing 
equations for ocean physics are the same in the global and regional 
models while there is diversity between the equations used to simulate 
biochemical processes in the global ESMs and the Bering10K regional 
model. Results confirm this expectation (Fig. 5). Bering10K whole 
domain averaged temperatures from the regional simulations almost 
match exactly with that from the global ESMs (that is, data are situated 
on the 1:1 diagonal line on Fig. 5a), but there are stronger deviations 
from the diagonal line in salinity and nitrate concentration (Fig. 5 b-c). 
Stronger deviations for salinity than for temperature are likely caused by 
the lack of negative feedbacks between surface freshwater flux and 
modeled salinity, whereas such feedback exists between surface heat 
flux and simulated ocean temperature. Larger distance between 
different colors (representing different ESM) than between the open and 
filled circles (representing SSP126 and SSP585 forcing within each ESM) 
also suggests that the across-model spread is stronger than spread across 
the scenarios, although this result is from a limited size ensemble (N = 3 
within each scenario). 

Since nitrate concentration is crucial for lower trophic level dy
namics, we take a closer look at this variable (Fig. 6). In both the 
regional and global simulations, the regional domain averaged nitrate 
concentration decreases with time, but with variable rates. The rate of 
nitrate decrease in the GFDL forced downscaling is noticeably faster 
than from the downscalings forced by the other two ESMs (i.e. the 
vertically oriented data cluster in Fig. 6b), while the GFDL ESM also has 
the highest nitrate concentration among the three ESMs. It’s worth 
emphasizing that the Bering10K model uses one set of equations and 
parameters and the only difference across the ESM ensemble is the 
forcing provided at the lateral boundaries and sea surface. We speculate 

that the faster nitrate decline in the GFDL forced simulation reflects the 
regional simulation adjusting towards its own preferred state subject to 
regional model formulation, but more work is needed to confirm this 
hypothesis. 

3.3. Bering10K full domain vs. EBS shelf stratification 

To evaluate Bering Sea hydrographic changes, we use stratification 
quantified by brunt-vaisällä frequency N2 = −

g
ρ

dρ
dz (units: 1/s2) as it 

impacts a suite of biological processes ranging from nutrient transport to 
sinking of particles. Averaged over the Bering10K horizontal domain, 
stratification increases with time (Fig. 7): specifically, anomalies rela
tive to the 1980–2014 mean state averaged over 2066–2100 and from 
surface to 200-m depth are 2.0, 1.1, and 1.7 (units: 1.e-5 1/s2) under the 
CESM, GFDL, and MIROC SSP585 forcing respectively, which is 49.1%, 
23.4%, and 33.0% of their 1980–2014 mean N2. Consistent with its 
weaker bottom temperature warming trend relative to the other two 
models (Fig. 4), the GFDL forcing also produces the weakest 

Fig. 5. Scatter plot of full Bering10K domain averaged ocean temperature (◦C), 
salinity (g/kg), and nitrate concentration (mmol/m3) in March directly from 
global ESMs (using the horizontal axis) vs. from the downscaled Bering10K 
regional simulations (using the vertical axis). Different colors correspond to 
different ESMs and their downscaled results (color legend is shown in panel a). 
Filled (open) circles are from historical + SSP585 (historical + SSP126). 
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stratification increase among the three simulations, and GFDL forced 
positive temperature anomalies penetrate to shallower depth than those 
forced by the other two ESMs. Within each ESM, the difference in 
stratification increase between SSP126 and SSP585 scenarios is evident 
after mid-century (~2050) but minimal in the earlier decades. 

The above full domain average patterns of water column stratifica
tion change when we repeat our analysis using only the EBS; in that case, 
summer stratification below the surface mixed layer weakens under 
climate forcing, especially in the GFDL and MIROC forced simulations 
(Fig. 8). This is related to the loss of sea ice and ice melt induced 
freshwater stratification on the Shelf. As shown in Section 3.1, the 
Bering Sea shelf is seasonally covered by sea ice historically (Fig. 2), but 
sea-ice concentration in winter will decrease significantly with warming 
(Fig. 3). In January, salinity anomalies (future climatology minus his
torical climatology) on the shelf are negative from the sea surface to the 
bottom (Fig. 9a-b), consistent with both increased surface freshwater 
flux into the ocean and melting of sea ice under climate forcing (Lee 
et al., 2013) and facilitated by strong mixing during winter. In addition, 
fresher bottom water is projected south of the Alaskan Peninsula 
(Fig. 9b, 9d), and this water flows through Unimak Pass and enters the 
southeastern Bering Sea shelf thus serving as a source of fresher bottom 
water (Stabeno et al., 2002). In July, however, the projected sea surface 
salinity (SSS) anomaly is positive in the northern shelf (Fig. 9c) but re
mains negative at depth (Fig. 9d). The positive SSS anomaly in summer 
in the future is associated with lack of ice melt induced freshening. 
Similar processes have been observed in the Bering Sea under recent ice 

loss events (Stabeno and Bell, 2019). Lack of sea ice and ice melt in the 
future contributes to weakened freshening in the upper layers relative to 
the lower layers, when averaged over the shelf during the summer 
months (Fig. 9f). This unique vertical gradient of salinity changes - 
stronger freshening at the lower than upper layers on the shelf - is largely 
absent from the Bering10K full domain average (Fig. 9e) and contributes 
to the subsurface stratification decrease for the EBS Shelf shown in 
Fig. 8. This result is consistent with Lee et al. (2013) where stratification 
of the upper layer (0–60 m) in June weakens and the mixed layer 
deepens in the shelf region under a 1% per year CO2 increase 
experiment. 

3.4. Lower trophic level responses to climate forcing 

3.4.1. Historical mean states 
As a baseline against which future changes are assessed, monthly 

climatology of water column biophysical variables averaged on the 
Bering Sea shelf in the historical period (1980–2014) are provided in the 
supplemental material. These state variables exhibit strong seasonal 
cycles with distinct vertical patterns. For example, potential tempera
ture is generally well mixed in winter across the entire shelf but stratifies 
in summer while salinity shows a vertical gradient yearly around but 
stronger gradient in summer than in winter (Fig. S1). Nitrate distribu
tion indicates upper layer drawdown and depletion during the growth 
season while ammonium concentration peaks at depth in the fall 
following spring and summer growth (Fig. S1). A distinct feature in the 
distribution of both phytoplankton size classes is the presence of a 
subsurface maxima, which appears near the base of the mixed layer 
subsequent to the initial surface bloom (Fig. S2). This subsurface 
biomass maximum is driven primarily by regenerated production and 
extends further into the growing season than surface biomass. Increased 
ammonium uptake in late summer and fall is also suggested by obser
vations made in Canadian Arctic waters (Martin et al., 2012). Oxygen 
seasonal cycle and vertical distribution is influenced by phytoplankton 
growth and respiration and also regulated by ocean temperature and 
air-sea exchange – it peaks at the same time/depth as the phytoplankton 
biomass maximum but remains relatively high in winter due to both 
strong exchange with the atmosphere in ice-free waters and increased 
solubility under cold temperatures (Fig. S2). The near-surface and 
near-bottom minimum in the summer and fall oxygen concentration is 
associated with decreased solubility and increased respiration as 
biomass sinks to the bottom. The seasonal cycle and vertical distribution 
of different zooplankton classes (Fig. S3) are similar to those of the 
phytoplankton size classes, with zooplankton vertical distribution pri
marily being a function of the location of their prey. An exception to this 
is seen within the large-bodied copepod functional groups (Fig. S3, 
“NCaO” and “NCaS”). These groups migrate down to depth up to ~400 
m in late summer of the year to reflect the diapause phenomenon, and 
their biomass values subsequently decrease due to lack of spatial overlap 
with their prey groups. The on-shelf (“NCaS”) group is able to maintain a 
small population at depth, with a small secondary peak in July and 
August, while the oceanic (NCaO) group is programmed to die once they 
reach the bottom. 

3.4.2. Spatiotemporal characteristics of projected changes 
To illustrate future changes, we present monthly climatology 

anomalies (climatology from 2066 to 2100 minus that from 1980 to 
2014) of phytoplankton biomass, zooplankton biomass, nitrate, and 
oxygen under SSP585 forcing (Fig. 10). Anomalies of plankton biomass 
and oxygen are depicted at coordinate vertical level 18, which has a 
mean depth of 12 m averaged over the shelf region (keep in mind that 
depth of layer 18 in terrain-following vertical coordinate is a function of 
ocean bottom depth and is shallower where the ocean bathymetry is 
shallower, and vice versa) and approximates the location of the sub
surface maxima across much of the southeastern shelf in the historical 
climate (Fig. S1-S2) as well as the layer with the largest changes in the 

Fig. 6. Same as Fig. 5 but only for nitrate concentration (mmol N/m3), and 
results from different ESMs are displayed in separate panels. Symbols are 
colored coded by year from 1980 to 2100. Ranges of the vertical and horizontal 
axis are the same in a)-c). 
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future (Fig. 10 a-d, bottom row). Anomalies of nitrate are shown for the 
bottom layer. 

In April–May, phytoplankton biomass shows widespread positive 
anomalies across the portion of the shelf that was covered by seasonal 
ice in the historical period, while historically ice-free regions (south
ernmost portions of the middle and outer shelf) experience negative 
anomalies. In July–August, phytoplankton biomass anomalies are 
generally negative shelf-wide, with small changes across the outer- 
middle domain but larger decreases in the inner domain (Fig. 10 a). 
Zooplankton biomass anomalies show a similar pattern at this layer, 
with positive anomalies in spring and negative anomalies in summer 
(Fig. 10b, top two rows). Averaged over the entire shelf, phytoplankton 
and zooplankton anomalies are positive at all layers before May and 
negative thereafter (Fig. 10 a-b, bottom row). These patterns of biomass 
anomalies suggest a phenological shift toward earlier blooms. 

Similar to biomass changes, nitrate and oxygen concentrations have 
negative anomalies throughout the annual cycle and at most layers 
(Fig. 10 c-d), with exception at the northern shelf for oxygen concen
tration. The vertical distribution of oxygen anomalies (Fig. 10c, bottom 
row) is pattern-correlated with that of phytoplankton biomass (Fig. 10a, 
bottom row) with a correlation coefficient of 0.77 (p < 0.0001). Aver
aged nitrate concentrations show a future decrease throughout the 
entire water column before the spring drawdown (Fig. 10d, bottom row) 
with decreases as large as 10 mmol N/m3 on the southeastern shelf 
(Fig. 10d, top row). Nitrate input at the Bering10K lateral boundaries 
has no significant trend over the simulation period (not shown), sug
gesting that the nitrate concentration changes on the EBS shelf (Fig. 10d) 
are regulated primarily by internal dynamics of the regional model, but 
more work is needed to identify the precise mechanisms. 

The phenology shift in plankton biomass is also seen when 

Fig. 7. Changes in July Brunt-Väisälä frequency (N2, unit: 1.0e-5 s-2) relative to 1980–2014 mean. Names of the global ESM and SSP scenarios are indicated on each 
panel. Results are averaged over the full Bering10K domain (Fig. 1a), and y-axis corresponds to the mean depth of Bering10K vertical layers (from surface to layer 17) 
averaged over this domain. 

Fig. 8. Same as in Fig. 7 but averaged over the Bering Sea shelf only (Fig. 1d), and results are shown for the entire water column from surface to bottom.  
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comparing monthly climatology from different time periods in individ
ual shelf biophysical domains though there are across-region differences 
(Figs. 11 and 12). In all time periods seasonal phytoplankton biomass 
decreases from inshore to offshore with subtle differences in the north- 
south direction (Fig. 11a). For instance, the southern shelf could have a 
secondary peak around October (Fig. 11a, panels labeled as “s-inn” and 
“s-mid”) but this signature is weaker in the northern shelf. This is 
consistent with previous observations (Sigler et al., 2014) and modeling 
studies (e.g. Cheng et al., 2016; Kearney et al., 2020) where rapid in situ 
nutrient recycling is found to contribute to a fall bloom in the southern 
shelf. On the other hand, the spring phenology shift of phytoplankton 
biomass appears stable in the south particularly in the middle and outer 
domains where no significant biomass growth develops prior to April in 
all time periods (Fig. 11 b, lower row, left two panels). Predictions of 
enhanced late winter to early spring biomass in the north are likely due 
to enhanced light availability associated with sea-ice reduction and 
temperature increase in the future. Sea-ice reduction is not nearly as 
strong in the south, resulting in a more subtle shift in biomass growth 
timing. The relative decrease in the future fall phytoplankton biomass 
climatology is comparable across all shelf biophysical domains and is 
about 50% of their corresponding historical climatology (value of the 
teal lines in August–October in Fig. 11b), suggesting potential roles of 
processes that influence nutrient supply to the entire EBS shelf rather 

than advective processes within the shelf that redistribute nutrients 
locally. 

The phenology shift is seen in large zooplankton biomass as well 
(Fig. 12). Specifically, in the south-inner domain, spring biomass in
crease occurs approximately one month earlier in 2066–2100 than in 
1980–2014, while the fall decrease occurs 2 months earlier. The asso
ciated changes in standing biomass in a given month/domain are sig
nificant. For instance, on the south-inner shelf, mean biomass in April 
(October) of the 2066–2100 climatology under SSP585 forcing is three 
times (half) of their historical values (Fig. 12b, lower-right panel). 
Incidentally, the averaged seasonal cycle under SSP126 from both 
2031–2065 and 2066–2100 is close to the averaged seasonal cycle of 
2031–2065 under SSP585 forcing (Fig. 12a, closeness of the dashed lines 
to the solid gray line), whereas the seasonal cycle from 2066 to 2100 
under SSP585 (Fig. 12a, teal solid line) has shifted significantly from the 
other three cases. By this metric, less intense forcing (SSP126) has 
delayed the phenology shift from strong forcing (SSP585) by ~35 years. 

3.4.3. Model and scenario uncertainties 
Uncertainty in future projections is generally attributed to three 

sources (e.g. Hawkins and Sutton, 2009): 1) natural/internal variability 
of the climate system; 2) model structural uncertainty; 3) scenario un
certainty. In the dynamical downscaling framework where one regional 

Fig. 9. Ensemble mean (averaged over three ESMs) changes in monthly climatology from 2066 to 2100 relative to that of 1980–2014 under SSP585 forcing (later 
minus earlier climatology). Shown are sea surface salinity anomalies (g/kg) in January (a) and July (c), bottom layer salinity anomalies in January (b) and July (d), 
vertical distribution of salinity anomalies averaged over the full Bering10K domain (e) and EBS shelf only (f). Red contours in (a)-(d) represent the 200-m isobath. Y- 
axis in (e–f) corresponds to the vertical coordinate layer of the model (K = 30 is at the sea surface). 
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biophysical model is used, model uncertainty is associated with the 
parent global ESMs. The relative amplitudes of model versus scenario 
uncertainties have been quantified in numerous studies (e.g., Hawkins 
and Sutton, 2009; Frölicher et al., 2016) and the results are found to be 
dependent on the processes in question. For instance, in terms of global 
mean temperature increase, scenario uncertainty generally surpasses 
model uncertainty in the 2nd half of the 21st century (Hawkins and 
Sutton 2009); in contrast, projections of net primary productivity (NPP) 
are dominated by model uncertainty even at the end of 21st century 
(Frölicher et al., 2016). While our ensemble size is limited, we can 

quantify model vs. scenario uncertainties to inform future model and 
scenario selections for dynamical downscaling, as there are tradeoffs 
between using more global ESMs vs. more scenarios. 

We first analyze the large zooplankton biomass as it represents a key 
stepping stone between lower trophic level components and fisheries. 
Model uncertainty is quantified as the standard deviation around the 
multi-model mean and presented in Fig. 13 for the shelf biophysical 
domains, separately for the spring growth, fall decrease, and over
wintering seasons. Under SSP585 forcing, model uncertainty generally 
increases towards the shore, and it is larger in the fall season than in 

Fig. 10. Changes in monthly climatology of the multi-model mean from 2066 to 2100 relative to that from 1980 to 2014 (later minus earlier climatology) under 
SSP585 forcing. Shown are a) subsurface phytoplankton biomass (mg C/m3), b) subsurface large zooplankton biomass (mg C/m3), c) subsurface oxygen (mmol O2/ 
m3), and d) bottom nitrate concentration (mmol N/m3). In a)-d), the first (second) row is averaged over April–May (July–August) representing the spring (fall) 
growth season; the third row shows the corresponding monthly climatology anomalies averaged horizontally over the EBS displayed as a function of vertical co
ordinate layer (k = 30 is at the sea surface) and month. 
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spring. This suggests that there is more uniformity in global ESM’s 
treatment of spring bloom dynamics (e.g. processes that determine light 
availability) than in their representation of processes that control fall 
productivity dynamics such as nutrient recycling (i.e. mixing and 
regeneration). Despite these uncertainties, across all shelf domains, 
spring (fall) large zooplankton biomass increases (decreases) with time, 
reflecting the phenology shift described above. Model uncertainty 
characteristics under SSP126 forcing (Fig. S4) is qualitatively similar to 
that under SSP585 forcing and SSP126 produces overall weaker trends 
than SSP585. 

Ensemble averages of SSP585 and SSP126 projections, respectively, 
of the biophysical variables on the EBS shelf do not diverge significantly 
from one another until 2070 (Fig. 14), even then there are still overlaps 
between the two scenarios given the large across-model spread (Fig. 14). 
This is consistent with the weak scenario spread seen in Figs. 5, 6, 11 and 
12. Our results from a limited set of ESM ensembles corroborate the 
conclusions of Frölicher et al. (2016) where it is found that for NPP, 
global ESM structural uncertainty is larger than scenario uncertainty at 
the end of the 21st century across the CMIP5 ensemble. These results 
therefore advocate for the use of highly contrasting SSP scenarios in 
dynamical downscaling aimed at understanding lower trophic level re
sponses to climate forcing on the EBS shelf. The percent decrease of 
these processes averaged in 2066–2100 relative to historical mean states 
in 1980–2014 is summarized in Table 2. 

4. Discussion 

In the previous CMIP5 downscaling of the Bering Sea under Repre
sentative Concentration Pathway 8.5 forcing scenario, which is 

comparable to SSP585 in CMIP6, Hermann et al. (2019) found that the 
averaged shelf bottom temperature may warm by as much as 5◦C by 
2100. This result is largely unchanged in the CMIP6 driven ensemble 
suite, especially considering the large uncertainties associated with the 
across-model spread (Fig. 15 a). In terms of biomass changes, results 
from Hermann et al. (2019) using the previous Bering10K with ten 
layers and CMIP5 forcing (Fig. 15, b-c, red lines and shading) are similar 
to results from this study using the updated Bering10K biogeochemistry 
and CMIP6 forcing (Fig. 15, b-c, black lines and shading). A noticeable 
change between Hermann et al. (2019) and this study is the increased 
across-model spread in the CMIP6 forced projections. This is consistent 
with larger spread of ECS among the CMIP6 models we used than among 
the CMIP5 models (highest minus lowest ECS among CMIP6 is 2.49, 
compared to 2.21 among CMIP5) (Table 2). The same Bering10K 
biogeochemistry as used in this study but under CMIP5 RCP8.5 forcing 
(Pilcher et al., 2021, this issue) produced larger mean biomasses, but 
their declining trend under warming is similar to both Hermann et al. 
(2019) and this study (Fig. 15, b-c, blues lines and shading). Similarities 
as well as differences in the dynamically downscaled long-term pro
jections across CMIP generations are expected, and they reflect struc
tural differences in global ESM and the regional model formulation. Our 
results highlight the large uncertainty associated with using a limited 
number of parent models for dynamical downscaling. Hybrid methods 
combining dynamical and statistical downscaling are possible ways to 
efficiently increase regional downscaling ensemble size (Hermann et al., 
2019; Hermann et al., this issue). The strength and weakness of each 
statistical method (e.g. combined EOF analysis, linear inverse modeling) 
and the underlying assumptions are areas that need further research. 

On the global scale, climate projections suggest that under warming, 

Fig. 11. Ensemble mean of monthly clima
tology of phytoplankton biomass (units: mg 
C/m3) from “historical” (green lines), mid- 
century (gray lines) and late 21st century 
(teal lines) simulations (a). Same as in (a) but 
showing fractional changes of future clima
tology relative to historical climatology 
defined as (climo_future - climo_historical)/ 
climo_historical (b). Results are averaged 
vertically and horizontally over each bio
physical domain of the EBS shelf whose 
names are indicated by y-axis labels. Solid 
(dashed) lines are forced by the SSP585 
(SSP126) scenario.   
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primary productivity in the tropics and mid-latitudes will decrease due 
to weakened mixing bringing less nutrients to the surface euphotic zone, 
while in the high latitudes, primary productivity will increase because 

weakened mixing and reduced sea ice alleviates light limitation (e.g., 
Bopp et al., 2013; Kwiatkowski et al., 2020). For the EBS phytoplankton 
projections, competing effects are at play, e.g. rising temperature 

Fig. 12. Same as Fig. 11 but for large zooplankton biomass (units: mg C/m3). The maximum value for the northern inner shelf on b) is out of y-axis range and 
approaches 10. This high value is because April climatology of zooplankton biomass in this region is small for the historical period. 

Fig. 13. Annual mean time series from 1980 to 2100 of the vertically averaged large zooplankton biomass (units: mg C/m3) in each of the EBS shelf biophysical 
domains. Solid lines are ensemble means and shading represents ± one standard deviation of ensemble spread around the ensemble mean. Future projections are 
forced by the SSP585 scenario. Black, red, and blue color corresponds to December-to-March (DJFM), April-to-July (AMJJ), and August-to-November (ASON) av
erages, respectively. 
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increases biological growth rate and promotes primary production on 
the one hand (Brown et al., 2011), and warming/increased stratification 
decreases nutrient supply and primary productivity on the other (Strom 
and Fredrickson, 2008). Loss of sea ice affects this balance as well, by 

increasing light penetration and reducing the seasonal stratification 
associated with ice melt. The relative importance of sea-ice loss and 
temperature increase on ocean primary production changes is discussed 
in Gibson et al. (2020), and the results are found to vary strongly by 
region. Our dynamical downscaling results under CMIP5 and CMIP6 
forcing both suggest that the annual mean phytoplankton biomass on 
the Bering Sea shelf will decrease, accompanied by a spring biomass 
increase and fall biomass decrease associated with a phenology shift. 
The phenology shift is detected when comparing future climatology 
based on years 2031–2065 or 2066–2100 with historical climatology 
from 1980 to 2014, and this signal emerges despite interannual varia
tion observed in recent years where anomalously warm years with early 
ice retreat are associated with delayed spring bloom. Regional down
scaling results are subject to the particular formulation of Bering10K and 
its parameters. In the future, systematic contrasting between the global 
ESM and Bering10K projections and identification of underlying causes 

Fig. 14. Percent changes in future projections relative to historical (1980–2014) mean state, results are horizontally averaged over the EBS shelf. (a) April bottom 
layer nitrate concentration (mmol N/m3); (b) July layer 18 oxygen concentration (mmol O2/m3); (c) annual mean vertically averaged phytoplankton biomass (mg C/ 
m3); (d) annual mean vertically averaged large zooplankton biomass (mg C/m3). Black (red) line after 2014 is forced by the SSP126 (SSP585) scenario. Solid lines are 
ensemble means and shading represents ± one standard deviation of ensemble spread around the ensemble mean. 

Table 2 
Percentage changes in the 2066–2100 mean values relative to the 1980–2014 
mean values of various biological variables spatially averaged over the Eastern 
Bering Sea shelf under SSP126 and SSP585 forcing. Results listed are the multi- 
model mean ± across-model standard deviations around the multi-model mean.   

SSP126 SSP585 

June layer 18 oxygen -3.71±4.79  -10.34 ± 4.54  
April bottom NO3 -18.09 ± 7.72  − 29.40±6.03  
Annual phytoplankton biomass − 18.77±9.67  − 32.27±8.16  
Annual large zooplankton biomass − 7.15±4.81  − 15.11±4.08   

Fig. 15. Comparison across CMIP5 and CMIP6 Bering10K downscaled simulations. Shown are EBS shelf July bottom temperature (a, unit: ◦C), vertically averaged 
annual mean phytoplankton (b) and large zooplankton biomass (c, unit: mg C/m3). Lines are ensemble means averaged across ESM forcings and shading represents ±
one standard deviation of ensemble spread around the ensemble mean. Black, red, and blue color corresponds to result from 30-layer Bering10K forced by CMIP6 
ESMs (this study), 10-layer Bering10K forced by CMIP5 ESMs (Hermann et al., 2019), and 30-layer Bering10K forced by CMIP5 ESMs (Pilcher et al., 2021, this issue), 
respectively. Forcing from CMIP5 (CMIP6) ESMs is RCP8.5 (SSP585). 
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for significant differences or lack thereof will be informative. Global and 
regional projections provide complementary information - the former is 
a coordinated multi-national, multi-institution effort which allows for 
better quantification of natural, model structural, and scenario un
certainties, while the latter tends to be carried out by a single institution 
and provides regional user-relevant information. The complexity of 
marine ecosystem dynamics likely demands continued usage of both 
modeling approaches in the future. 

Impacts of warming on phytoplankton seasonality have been previ
ously examined in CMIP5 models (Henson et al., 2013). In the oceanic 
biogeographic “province” of the high latitude North Pacific (which in
cludes the Gulf of Alaska and Bering Sea), Henson et al. (2013) found a 
negative trend in primary production with large inter-model un
certainties and an earlier timing of seasonal primary production peak. 
This is consistent with our downscaling results although we focus on a 
much smaller geographic region. Seasonality shifts in these latitudes are 
generally attributed to reduction in mixing, which leads to earlier 
removal of light limitation and an earlier start to the growth season (e.g. 
Doney, 2006). Henson et al. (2013) also detected a negative trend in 
surface nitrate concentration in the same ocean province, again 
consistent with our results. In the regional dynamical downscaling 
framework, nitrate concentration on the Bering Sea shelf is influenced 
by the internal dynamics of the regional model as well as external 
forcing of macronutrient concentrations imposed at the lateral bound
aries. Preliminary results suggest that the trend in the lateral boundary 
forcing from the global ESMs is weak through 2100, but a more 
comprehensive nutrient budget analysis of the Bering Sea shelf is needed 
to shed light on the precise mechanisms that control EBS shelf nutrient 
sources and sinks, and to separate spin up-induced drift from climate 
change impacts. 

Subsurface phytoplankton biomass maxima are a common feature in 
model simulations and in situ observations, but they may not be fully 
captured by satellite remote sensing which suggests an increase in NPP 
for Arctic ecosystems under warming and reduced ice (Arrigio et al., 
2008). Model simulations can be used to investigate the subsurface 
maxima formation mechanisms and relationships between phyto
plankton biomass vertical structure and its surface imprints, and how 
these relationships may change under climate forcing. While we have 
qualitative knowledge on how ocean temperature, stratification/light 
limitation and nutricline may adjust to climate forcing and how these 
processes affect phytoplankton vertical distribution (Cullen, 2015), 
quantification of these complex interactions is only possible with more 
complete observations and data validated model simulations. 

Here we have presented results from a limited ensemble dynamical 
downscaling and focused specifically on the EBS shelf through the lens 
of a few ecosystem critical biophysical processes. With their caveats, 
these modeling results reiterate the strong spatiotemporal heterogeneity 
in the shelf ecosystem response to climate forcing. Undoubtedly marine 
ecosystems will experience multiple stressors under warming (Bopp 
et al., 2013), and such signals are likely more acute on the regional 
scales. The implications of these changes on the upper trophic level and 
fisheries processes are currently addressed through the integrated 
ACLIM project (Hollowed et al., 2020; Holsman et al., 2020). 

5. Conclusions 

In this study, we analyze the latest Bering Sea dynamical down
scaling simulations forced by selected CMIP6 ESMs. These simulations 
comprise the lower trophic modeling component of the ACLIM project, 
where regionally downscaled biophysical indices are used in a suite of 
ecosystem modeling experiments with an ultimate goal of evaluating 
fishery management strategies. Therefore, we focus on analyzing shelf 
biophysical variables that potentially affect the upper trophic level 
marine ecosystem and fisheries. The main conclusions from this study 
are:  

1) Volume integrated ocean hydrography and nitrate concentration of 
the regional simulations are constrained by parent ESM forcing to 
varying degrees. More specifically, domain averaged temperature of 
the regional simulations mirror those in the global ESMs whereas the 
corresponding salinity and nitrate concentration show stronger de
viations from the parent ESMs (Figs. 5 and 6).  

2) Ocean stratification response to climate forcing averaged over the 
Bering10K full domain (including the shelf and deep basin) differs 
from that averaged on the shelf (Figs. 7 and 8). This is because 
summer stratification on the EBS shelf is influenced by ice melt 
induced freshening. Loss of sea ice in the future diminishes its surface 
freshening effect during the melt season, reducing negative sea sur
face salinity anomalies and weakening stratification (Fig. 9). In this 
sense, loss of sea ice (a winter phenomenon) has non- 
contemporaneous consequences (affecting summer stratification).  

3) Modeled primary and secondary plankton biomass has subsurface 
maxima during the growing season whose amplitude decreases with 
warming. Accompanying warming and primary productivity change, 
oxygen concentration decreases over much of the Bering Sea shelf 
water column, and the vertical and seasonal adjustment of oxygen 
concentration is pattern correlated with phytoplankton biomass 
changes (Fig. 10).  

4) Across the EBS shelf, phenology of phytoplankton and zooplankton 
biomass shifts earlier (Figs. 11 and 12), and shifts are stronger on the 
inner and middle domains than on the outer domain, and in the 
northern latitudes (north of 60◦N) than in the south. The corre
sponding fall plankton biomass decrease has a larger across-model 
spread than the spread in the projected spring biomass increase 
(Fig. 13).  

5) Projections of regional biogeochemistry adjustment at the end of the 
21st century are not well separated between SSP126 and SSP585 
forcing given the large across-model spread within each scenario 
(Fig. 14). This result, albeit from a limited ensemble size (three ESMs 
under each scenario), is consistent with an earlier study using more 
global ESMs where inter-model spread is found to be larger than 
scenario spread in the biological realm (Frölicher et al., 2016). It 
supports the selection of the most contrasting emission scenarios in 
regional downscaling of biological processes.  

6) Projected increase in the EBS shelf summer bottom temperature is 
largely unchanged from CMIP5 RCP8.5 to CMIP6 SSP585 scenarios 
but large across-model spread persists from CMIP5 to CMIP6 pro
jections; similarly, projected annual mean phytoplankton and large 
zooplankton biomass decreasing trends are comparable between 
RCP8.5 and SSP585 projections (Fig. 15). These results suggest that 
the projected long-term trend in EBS bottom temperature and 
plankton biomasses are robust responses to climate forcing. 
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Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagliabue, A., et al., 2020. 
Tracking improvement in simulated marine biogeochemistry between CMIP5 and 
CMIP6. Curr. Clim. Change Rep. 6, 95–119. https://doi.org/10.1007/s40641-020- 
00160-0. 

Siddon, E., 2020. Ecosystem Status Report for the Eastern Bering Sea. In: Stock 
Assessment and Fishery Evaluation Report, vol. 1007. North Pacific Fishery 
Management Council. West Third, Suite 400, Anchorage, AK 99501.  

Sigler, M.F., Harvey, H.R., Ashjian, J., Lomas, M.W., Napp, J.M., Stabeno, P.J., Van 
Pelt, T.I., 2010. How does climate change affect the Bering Sea ecosystem? Eos. 
Trans. Am. Geophys. Union 91, 457–458. https://doi.org/10.1029/2010EO480001. 

Sigler, M.F., Stabeno, P.J., Eisner, L.B., Napp, J.M., Mueter, F.J., 2014. Spring and fall 
phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, 

during 1995–2011. Deep Sea Res. Part II Top. Stud. Oceanogr. 109, 71–83. https:// 
doi.org/10.1016/j.dsr2.2013.12.007. 

Stabeno, P.J., Reed, R.K., Napp, J.M., 2002. Transport through Unimak pass, Alaska. 
Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5919–5930. https://doi.org/10.1016/ 
S0967-0645(02)00326-0. 

Stabeno, P.J., Farley, E., Kachel, N., Moore, S., Mordy, C., Napp, J.M., Overland, J.E., 
Pinchuk, A.I., Sigler, M., 2012. A comparison of the physics of the northern and 
southern shelves of the eastern Bering Sea and some implications for the ecosystem. 
Deep Sea Res. Part II Top. Stud. Oceanogr. 65–70, 14–30. 

Stabeno, P.J., Duffy-Anderson, J.T., Eisner, L.B., Farley, E.V., Heintz, R.A., Mordy, C.W., 
2017. Return of warm conditions in the southeastern Bering Sea: physics to 
fluorescence. PLOS ONE 12, e0185464. https://doi.org/10.1371/journal. 
pone.0185464. 

Stabeno, P.J., Bell, S.W., 2019. Extreme conditions in the Bering Sea (2017–2018): 
record-breaking low Sea-Ice extent. Geophys. Res. Lett. 46, 8952–8959. https://doi. 
org/10.1029/2019gl083816. 

Stevenson, D.E., Lauth, R.R., 2019. Bottom trawl surveys in the northern Bering Sea 
indicate recent shifts in the distribution of marine species. Polar Biol. 42, 407–421. 
https://doi.org/10.1007/s00300-018-2431-1. 

Stock, C.A., Dunne, J.P., Fan, S., Ginoux, P., John, J., Krasting, J.P., et al., 2020. Ocean 
Biogeochemistry in GFDL’s Earth system model 4.1 and its response to increasing 
atmospheric CO2. J. Adv. Model. Earth Syst. 12, e2019MS002043 https://doi.org/ 
10.1029/2019MS002043. 

Strom, S.L., Fredrickson, K.A., 2008. Intense stratification leads to phytoplankton 
nutrient limitation and reduced microzooplankton grazing in the southeastern 
Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 1761–1774. https://doi. 
org/10.1016/j.dsr2.2008.04.008. 

Tittensor, D.P., Eddy, T.D., Lotze, H.K., Galbraith, E.D., Cheung, W., Barange, M., et al., 
2018. A protocol for the intercomparison of marine fishery and ecosystem models: 
fish-MIP v1.0. Geosci. Model Dev 11, 1421–1442. https://doi.org/10.5194/gmd-11- 
1421-2018. 

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., et al., 
2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m 
experiments. Geosci. Model Dev. 4, 845–872. https://doi.org/10.5194/gmd-4-84 
5-2011. 

Zelinka, M.D., Myers, T.A., McCoy, D.T., Po-Chedley, S., Caldwell, P.M., Ceppi, P., et al., 
2020. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, 
e2019GL085782 https://doi.org/10.1029/2019GL085782. 

W. Cheng et al.                                                                                                                                                                                                                                  

https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.5194/gmd-9-3461-2016
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref41
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref41
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref41
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref41
https://doi.org/10.1101/2020.08.03.234401
https://doi.org/10.1101/2020.08.03.234401
https://doi.org/10.3389/fmars.2018.00508
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref44
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref44
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref44
https://doi.org/10.3389/fmars.2020.00124
https://doi.org/10.1007/s40641-020-00160-0
https://doi.org/10.1007/s40641-020-00160-0
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref46
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref46
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref46
https://doi.org/10.1029/2010EO480001
https://doi.org/10.1016/j.dsr2.2013.12.007
https://doi.org/10.1016/j.dsr2.2013.12.007
https://doi.org/10.1016/S0967-0645(02)00326-0
https://doi.org/10.1016/S0967-0645(02)00326-0
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref50
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref50
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref50
http://refhub.elsevier.com/S0967-0645(21)00051-5/sref50
https://doi.org/10.1371/journal.pone.0185464
https://doi.org/10.1371/journal.pone.0185464
https://doi.org/10.1029/2019gl083816
https://doi.org/10.1029/2019gl083816
https://doi.org/10.1007/s00300-018-2431-1
https://doi.org/10.1029/2019MS002043
https://doi.org/10.1029/2019MS002043
https://doi.org/10.1016/j.dsr2.2008.04.008
https://doi.org/10.1016/j.dsr2.2008.04.008
https://doi.org/10.5194/gmd-11-1421-2018
https://doi.org/10.5194/gmd-11-1421-2018
https://doi.org/10.5194/gmd-4-845-2011
https://doi.org/10.5194/gmd-4-845-2011
https://doi.org/10.1029/2019GL085782

	Eastern Bering Sea shelf environmental and lower trophic level responses to climate forcing: Results of dynamical downscali ...
	1 Introduction
	2 Methods
	2.1 CMIP6 ESMs selection
	2.2 Bering10K
	2.3 Diagnostic methods

	3 Results
	3.1 Sea ice and EBS shelf bottom temperature
	3.2 Constraint of regional simulation by parent global ESMs
	3.3 Bering10K full domain vs. EBS shelf stratification
	3.4 Lower trophic level responses to climate forcing
	3.4.1 Historical mean states
	3.4.2 Spatiotemporal characteristics of projected changes
	3.4.3 Model and scenario uncertainties


	4 Discussion
	5 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


